ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На столе рубашкой вниз лежит игральная карта. Можно ли, перекатывая ее по столу через ребро, добиться того, чтобы она оказалась на прежнем месте, но
а) рубашкой вверх;
б) рубашкой вниз и вверх ногами?

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 225]      



Задача 108402

Темы:   [ Инварианты ]
[ Шахматная раскраска ]
Сложность: 2+
Классы: 7,8,9

На столе рубашкой вниз лежит игральная карта. Можно ли, перекатывая ее по столу через ребро, добиться того, чтобы она оказалась на прежнем месте, но
а) рубашкой вверх;
б) рубашкой вниз и вверх ногами?
Прислать комментарий     Решение


Задача 32792

Тема:   [ Математическая логика (прочее) ]
Сложность: 3-
Классы: 7,8,9

Государство Диполия населено лжецами и рыцарями, причем лжецы всегда лгут, а рыцари всегда говорят правду. Путешественник едет по этой стране в сопровождении официального гида и знакомится с другим жителем. "Вы, конечно, рыцарь?" -- спрашивает он. Туземец его понимает и отвечает "Ырг", что значает то ли "да", то ли "нет". На просьбу перевести гид говорит: "Он сказал -- да. Добавлю, что на самом деле он лжец". А вы как думаете?
Прислать комментарий     Решение


Задача 32832

Тема:   [ Математическая логика (прочее) ]
Сложность: 3-
Классы: 7,8,9

В Трансильвании живут беспартийные (которые всегда говорят правду) и члены одной единственной партии (которые всегда лгут). Кроме того, половина трансильванцев не в своем уме, и считает все истинные утверждения ложными и наоборот. Как с помощью одного вопроса (допускающего ответ "да-нет") выяснить,
  а) в своем ли уме ваш собеседник из Трансильвании;
  б) является ли он членом партии?
Прислать комментарий     Решение


Задача 32833

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 7,8,9

Является ли число 102030405060708090807060504030201 квадратом какого-нибудь целого числа?
Прислать комментарий     Решение


Задача 32836

Темы:   [ Неравенство треугольника (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3-
Классы: 7,8,9

В Старой Калитве живет 50 школьников, а в Средних Болтаях — 100 школьников. Где нужно построить школу, чтобы сумма расстояний, проходимых всеми школьниками, была наименьшей?
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 225]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .