ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

9 кг ирисок стоят дешевле 10 рублей, а 10 кг тех же ирисок – дороже 11 рублей. Сколько стоит 1 кг этих ирисок?

Вниз   Решение


Двое играют на треугольной доске (см. рис.), закрашивая по очереди на ней треугольные клеточки. Одна клетка (начальная) уже закрашена перед началом игры.
Первым ходом закрашивается клеточка, граничащая (по стороне) с начальной, а каждым следующим ходом — клетка, граничащая с только что закрашенной. Повторно клетки красить нельзя. Тот, кто не может сделать ход, проигрывает. Кто — начинающий или его соперник — победит в этой игре, как бы ни играл его партнёр?
Рассмотрите случаи:
а) Начальная клетка — угловая, поле любого размера;
б) Поле и начальная клетка как на рисунке к этому заданию;
в) Общий случай: поле любого размера, и начальная клетка в нём произвольная.
г) Дополнительное задание. Можно подумать, что начальная клетка определяет исход партии независимо от действий игроков. Нарисуйте, однако, на каком-нибудь поле примеры таких двух партий с одной и той же начальной клеткой, чтобы в первой побеждал начинающий, а во второй — его партнёр. Для удобства нумеруйте клетки: начальная — 0, первым ходом красится клетка 1, вторым — 2 и т. д.


ВверхВниз   Решение


На протяжении некоторого года (от 1 января до 31 декабря включительно) количество вторников было равно количеству четвергов. Следует ли из этого, что и количество сред было такое же? Рассмотрите два случая:
а) в году было 365 дней,
б} в году было 366 дней.

ВверхВниз   Решение


На доске было написано несколько натуральных чисел, причём разность любых двух соседних чисел равна одному и тому же числу. Коля заменил в этой записи разные цифры разными буквами, а одинаковые цифры — одинаковыми буквами. Восстановите исходные числа, если на доске написано Т, ЕЛ, ЕК, ЛА, СС.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 108734  (#1)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3-
Классы: 6,7,8,9

Есть три треугольника: остроугольный, прямоугольный и тупоугольный. Саша взял себе один треугольник, а Боря – два оставшихся. Оказалось, что Боря может приложить (без наложения) один из своих треугольников к другому, и получить треугольник, равный Сашиному. Какой из этих треугольников взял Саша?

Прислать комментарий     Решение

Задача 108735  (#2)

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 6,7,8,9

На станции "Лукоморье" продают карточки на одну, пять и двадцать поездок. Все карточки стоят целое число золотых монет. Пять карточек на одну поездку дороже, чем одна на пять поездок, а четыре карточки на пять поездок дороже одной карточки на двадцать поездок. Оказалось, что самый дешёвый способ проезда для 33 богатырей — это купить карточек на 35 поездок, потратив на это 33 золотые монеты. Сколько стоит карточка на пять поездок?

Прислать комментарий     Решение

Задача 108736  (#3)

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8,9

На доске было написано несколько натуральных чисел, причём разность любых двух соседних чисел равна одному и тому же числу. Коля заменил в этой записи разные цифры разными буквами, а одинаковые цифры — одинаковыми буквами. Восстановите исходные числа, если на доске написано Т, ЕЛ, ЕК, ЛА, СС.
Прислать комментарий     Решение


Задача 108737  (#4)

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 8,9

Решите задачу 3 для надписи A, BC, DEF, CGH, CBE, EKG.
Прислать комментарий     Решение


Задача 108738  (#5)

Темы:   [ Параллельность прямых и плоскостей ]
[ Признаки и свойства параллелограмма ]
[ Средняя линия трапеции ]
[ Уравнение плоскости ]
Сложность: 4
Классы: 9,10,11

Маленький Петя подпилил все ножки у квадратной табуретки и четыре отпиленных кусочка потерял. Оказалось, что длины всех кусочков различны, и что табуретка после этого стоит на полу, пусть наклонно, но по-прежнему касаясь пола всеми четырьмя концами ножек. Дедушка решил починить табуретку, однако нашёл только три кусочка с длинами 8, 9 и 10 см. Какой длины может быть четвёртый кусочек?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .