ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что если у шестиугольника противоположные стороны параллельны и диагонали, соединяющие противоположные вершины, равны, то вокруг него можно описать окружность.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 77886

Тема:   [ Поворот и винтовое движение ]
Сложность: 3
Классы: 10,11

Как расположены плоскости симметрии ограниченного тела, если оно имеет две оси вращения? (Осью вращения тела называется прямая, после поворота вокруг которой на любой угол тело совмещается само с собой.)
Прислать комментарий     Решение


Задача 77885

Темы:   [ Уравнения в целых числах ]
[ Метод спуска ]
[ Арифметика остатков (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Найти такие целые числа x, y, z и t, что  x² + y² + z² + t² = 2xyzt.

Прислать комментарий     Решение

Задача 77888

Темы:   [ Геометрическая прогрессия ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 9

Имеется 4n положительных чисел, таких, что из любых четырёх попарно различных можно составить геометрическую прогрессию. Доказать, что среди этих чисел найдется n одинаковых.
Прислать комментарий     Решение


Задача 109040

Темы:   [ Вписанные и описанные многоугольники ]
[ Шестиугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4+
Классы: 8,9

Доказать, что если у шестиугольника противоположные стороны параллельны и диагонали, соединяющие противоположные вершины, равны, то вокруг него можно описать окружность.
Прислать комментарий     Решение


Задача 77887

Тема:   [ Иррациональные уравнения ]
Сложность: 5-
Классы: 10,11

Найти действительные корни уравнения:

x2 + 2ax + $\displaystyle {\textstyle\frac{1}{16}}$ = - a + $\displaystyle \sqrt{a^2+x-\frac{1}{16}}$    $\displaystyle \left(\vphantom{0<a<\frac{1}{4}}\right.$0 < a < $\displaystyle {\textstyle\frac{1}{4}}$$\displaystyle \left.\vphantom{0<a<\frac{1}{4}}\right)$.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .