ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Вписанная (или вневписанная) окружность треугольника ABC касается прямых BC, CA и AB в точках A1, B1 и C1. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке. ![]() ![]() Какие стороны пересекает прямая Эйлера в остроугольном и тупоугольном треугольниках? ![]() ![]() ![]() Сторону АВ треугольника АВС продолжили за вершину В и выбрали на луче АВ точку А1 так, что точка В – середина отрезка АА1 . Сторону ВС продолжили за вершину С и отметили на продолжении точку В1 так, что С – середина ВВ1 . Аналогично, продолжили сторону СА за вершину А и отметили на продолжении точку С1 так, что А – середина СС1 . Найдите площадь треугольника А1В1С1 , если площадь треугольника АВС равна1. ![]() ![]() |
Страница: 1 2 >> [Всего задач: 6]
Может ли вершина параболы у = 4х² – 4(а + 1)х + а лежать во второй координатной четверти при каком-нибудь значении а?
Определите, на какую наибольшую натуральную степень числа 2007 делится 2007!
В выпуклом пятиугольнике проведены все диагонали. Каждая вершина и каждая точка пересечения диагоналей окрашены в синий цвет. Вася хочет перекрасить эти синие точки в красный цвет. За одну операцию ему разрешается поменять цвет всех окрашенных точек, принадлежащих либо одной из сторон либо одной из диагоналей на противоположный (синие точки становятся красными, а красные – синими). Сможет ли он добиться желаемого, выполнив какое-то количество описанных операций?
а) три отрезка имеют равные длины? б) длины двух отрезков равны между собой и не равны длине третьего?
Страница: 1 2 >> [Всего задач: 6] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |