ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29.
Укажите такое наименьшее число А, что в любом таком наборе чисел каждое из чисел не превосходит А.

Вниз   Решение


Отрезки AB и CD длины 1 пересекаются в точке O , причем AOC=60o . Докажите, что AC+BD1 .

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 109521  (#93.5.9.1)

Темы:   [ Простые числа и их свойства ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Натуральное число n таково, что числа  2n + 1  и  3n + 1  являются квадратами. Может ли при этом число  5n + 3  быть простым?

Прислать комментарий     Решение

Задача 109522  (#93.5.9.2)

Темы:   [ Неравенство треугольника (прочее) ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 7,8,9

Отрезки AB и CD длины 1 пересекаются в точке O , причем AOC=60o . Докажите, что AC+BD1 .
Прислать комментарий     Решение


Задача 109523  (#93.5.9.3)

Темы:   [ Инварианты и полуинварианты (прочее) ]
[ Квадратный трехчлен (прочее) ]
[ Процессы и операции ]
Сложность: 4-
Классы: 9,10,11

Автор: Перлин А.

Квадратный трёхчлен  f(x) разрешается заменить на один из трёхчленов      или     Можно ли с помощью таких операций из квадратного трёхчлена  x² + 4x + 3  получить трёхчлен  x² + 10x + 9?

Прислать комментарий     Решение

Задача 109524  (#93.5.9.4)

Темы:   [ Задачи с ограничениями ]
[ Рекуррентные соотношения (прочее) ]
[ Полуинварианты ]
Сложность: 5-
Классы: 8,9,10,11

В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины – его сын, а справа – его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны?

Прислать комментарий     Решение

Задача 109525  (#93.5.9.5)

Темы:   [ Арифметика остатков (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Целые числа x, y и z таковы, что  (x – y)(y – z)(z – x) = x + y + z.  Докажите, что число  x + y + z  делится на 27.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .