Версия для печати
Убрать все задачи
Каждая из окружностей
S1
,
S2
и
S3
касается внешним образом окружности
S (в точках
A1
,
B1
и
C1
соответственно) и двух
сторон треугольника
ABC (см.рис.). Докажите, что
прямые
AA1
,
BB1
и
CC1
пересекаются
в одной точке.

Решение
Плоскость разбита двумя семействами параллельных прямых на единичные квадратики. Назовем каемкой
квадрата
n ×
n, состоящего из квадратиков разбиения, объединение тех квадратиков, которые
хотя бы одной из своих сторон примыкают изнутри к его границе. Докажите, что существует ровно один
способ покрытия квадрата
100
×100
, состоящего из квадратиков разбиения, неперекрывающимися
каемками пятидесяти квадратов.
(Каемки могут и не содержаться в квадрате
100
× 100
.)


Решение
Докажите, что для натуральных чисел k, m и n справедливо неравенство [k, m][m, n][n, k] ≥ [k, m, n]².

Решение