Страница:
<< 6 7 8 9 10 11
12 >> [Всего задач: 56]
Задача
109732
(#01.5.11.3)
|
|
Сложность: 6+ Классы: 9,10,11
|
На плоскости даны два таких конечных набора
P1 и
P2 выпуклых многоугольников,
что любые два многоугольника из разных наборов имеют общую точку и в
каждом из двух наборов
P1 и
P2 есть пара непересекающихся
многоугольников. Докажите, что существует прямая, пересекающая все
многоугольники обоих наборов.
Задача
109733
(#01.5.11.4)
|
|
Сложность: 5 Классы: 9,10,11
|
Участникам тестовой олимпиады было предложено n вопросов. Жюри определяет сложность каждого из вопросов: целое положительное количество баллов, получаемых участниками за правильный ответ на вопрос. За неправильный ответ начисляется 0 баллов, все набранные участником баллы суммируются.
Когда все участники сдали листки со своими ответами, оказалось, что жюри так может определить сложность вопросов, чтобы места между участниками распределились любым наперед заданным образом. При каком наибольшем числе участников это могло быть?
Задача
109734
(#01.5.11.5)
|
|
Сложность: 4+ Классы: 10,11
|
Приведенные квадратные трёхчлены f(x) и g(x) принимают отрицательные значения на непересекающихся интервалах.
Докажите, что найдутся такие положительные числа α и β, что для любого
действительного x будет выполняться неравенство αf(x) + βg(x) > 0.
Задача
109735
(#01.5.11.6)
|
|
Сложность: 4+ Классы: 9,10,11
|
a и b – такие различные натуральные числа, что
ab(a + b) делится на a² + ab + b². Докажите, что |a – b| >
.
Задача
109736
(#01.5.11.7)
|
|
Сложность: 5- Классы: 9,10,11
|
В стране 2001 город, некоторые пары городов соединены дорогами, причём из
каждого города выходит хотя бы одна дорога и нет города, соединённого дорогами со всеми остальными. Назовём множество городов D доминирующим, если каждый не входящий в D город соединён дорогой с одним из городов множества D. Известно, что в каждом доминирующем множестве хотя бы k городов. Докажите, что страну можно разбить на 2001 – k республик так, что никакие два города из одной республики не будут соединены дорогой.
Страница:
<< 6 7 8 9 10 11
12 >> [Всего задач: 56]