ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Многочлены P, Q и R с действительными коэффициентами, среди которых есть многочлен второй степени и многочлен третьей степени, удовлетворяют равенству  P² + Q² = R².  Докажите, что все корни одного из многочленов третьей степени – действительные.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



Задача 109759  (#02.5.10.1)

Темы:   [ Кубические многочлены ]
[ Исследование квадратного трехчлена ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4+
Классы: 9,10,11

Многочлены P, Q и R с действительными коэффициентами, среди которых есть многочлен второй степени и многочлен третьей степени, удовлетворяют равенству  P² + Q² = R².  Докажите, что все корни одного из многочленов третьей степени – действительные.

Прислать комментарий     Решение

Задача 108137  (#02.5.10.2)

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема синусов ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Вспомогательные равные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Трапеции (прочее) ]
Сложность: 4
Классы: 9,10

Дан четырёхугольник ABCD, вписанный в окружность ω. Касательная к ω, проведённая через точку A, пересекает продолжение стороны BC за точку B в точке K, а касательная к ω, проведённая через точку B, пересекает продолжение стороны AD за точку A в точке M. Известно, что  AM = AD  и  BK = BC.  Докажите, что ABCD – трапеция.

Прислать комментарий     Решение

Задача 109761  (#02.5.10.3)

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Иррациональные неравенства ]
[ Монотонность и ограниченность ]
Сложность: 4+
Классы: 9,10,11

Автор: Храбров А.

Докажите, что для любого натурального числа  n > 10000  найдётся такое натуральное число m, представимое в виде суммы двух квадратов, что
 0 < m – n < 3 .

Прислать комментарий     Решение

Задача 109762  (#02.5.10.4)

Темы:   [ Связность и разложение на связные компоненты ]
[ Степень вершины ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 5-
Классы: 8,9,10,11

Автор: Пастор А.

В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002.

Прислать комментарий     Решение

Задача 109763  (#02.5.10.5)

Темы:   [ Неравенство Коши ]
[ Алгебраические неравенства (прочее) ]
[ Иррациональные неравенства ]
Сложность: 4
Классы: 8,9,10

Сумма положительных чисел a, b, c равна 3. Докажите, что  

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .