ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Натуральные числа x, y, z  (x > 2,  y > 1)  таковы, что  xy + 1 = z².  Обозначим через p количество различных простых делителей числа x, через q – количество различных простых делителей числа y. Докажите, что  p ≥ q + 2.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 109816  (#05.5.11.1)

Темы:   [ Уравнения с модулями ]
[ Монотонность и ограниченность ]
[ Последовательности функций (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4
Классы: 9,10,11

Какое наибольшее конечное число корней может иметь уравнение

|x-a1|+..+|x-a50|=|x-b1|+..+|x-b50|,

где a1 , a2 , a50 , b1 , b2 , b50 – различные числа?
Прислать комментарий     Решение

Задача 109825  (#05.5.11.2)

Темы:   [ Теория алгоритмов (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Процессы и операции ]
[ Оценка + пример ]
Сложность: 5-
Классы: 8,9,10,11

На оборотных сторонах 2005 карточек написаны различные числа (на каждой по одному). За один вопрос разрешается указать на любые три карточки и узнать множество чисел, написанных на них. За какое наименьшее число вопросов можно узнать, какие числа записаны на каждой карточке?
Прислать комментарий     Решение


Задача 108226  (#05.5.11.3)

Темы:   [ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Признаки подобия ]
[ Вписанный угол равен половине центрального ]
Сложность: 5-
Классы: 9,10

Пусть A', B' и C' – точки касания вневписанных окружностей с соответствующими сторонами треугольника ABC. Описанные окружности треугольников A'B'C, AB'C' и A'BC' пересекают второй раз описанную окружность треугольника ABC в точках C1, A1 и B1 соответственно. Докажите, что треугольник A1B1C1 подобен треугольнику, образованному точками касания вписанной окружности треугольника с его сторонами.

Прислать комментарий     Решение

Задача 109818  (#05.5.11.4)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Количество и сумма делителей числа ]
[ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Простые числа и их свойства ]
Сложность: 5
Классы: 8,9,10,11

Натуральные числа x, y, z  (x > 2,  y > 1)  таковы, что  xy + 1 = z².  Обозначим через p количество различных простых делителей числа x, через q – количество различных простых делителей числа y. Докажите, что  p ≥ q + 2.

Прислать комментарий     Решение

Задача 109819  (#05.5.11.5)

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Монотонность, ограниченность ]
Сложность: 4+
Классы: 9,10,11

Существует ли ограниченная функция f : такая, что f(1)>0 и f(x) удовлетворяет при всех x,y неравенству

f2(x+y) f2(x)+2f(xy)+f2(y)?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .