ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков– белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какие-нибудь две коробочки, в которых лежат белые шарики? ![]() ![]() Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр. ![]() ![]() ![]() Каждую грань кубика разбили на четыре равных квадрата и раскрасили эти квадраты в три цвета так, чтобы квадраты, имеющие общую сторону, были покрашены в разные цвета. Докажите, что в каждый цвет покрашено по 8 квадратиков. ![]() ![]() ![]() В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11? ![]() ![]() |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 56]
Три окружности ω1, ω2 и ω3 радиуса r проходят через точку S и касаются внутренним образом окружности ω радиуса R (R > r) в точках T1, T2 и T3 соответственно. Докажите, что прямая T1T2 проходит через вторую (отличную от S) точку пересечения окружностей ω1 и ω2.
Пусть многочлен P(x) = anxn + an–1xn–1 + ... + a0 имеет хотя бы один действительный корень и a0 ≠ 0. Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи P(x), можно получить из него число a0 так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.
В некотором государстве было 2004 города, соединённых дорогами так, что из каждого города можно было добраться до любого другого. Известно, что при запрещённом проезде по любой из дорог по-прежнему из каждого города можно
было добраться до любого другого. Министр транспорта и министр внутренних
дел по очереди вводят на дорогах, пока есть возможность, одностороннее
движение (на одной дороге за ход), причём министр, после хода которого из
какого-либо города стало невозможно добраться до какого-либо другого,
немедленно уходит в отставку. Первым ходит министр транспорта.
В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?
Расстоянием между числами a1a2a3a4a5 и b1b2b3b4b5 назовём максимальное i, для которого ai ≠ bi. Все пятизначные числа выписаны друг за другом в некотором порядке. Какова при этом минимально возможная сумма расстояний между соседними числами?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 56] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |