ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На экране компьютера стоят в ряд 200 человек. На самом деле эта картинка составлена из 100 фрагментов, на каждом – пара: взрослый и ребёнок пониже ростом. Разрешается в каждом из фрагментов изменить масштаб, уменьшив при этом одновременно рост взрослого и ребёнка в одинаковое целое число раз (масштабы разных фрагментов можно менять независимо друг от друга). Докажите, что это можно сделать так, что на общей картинке все взрослые будут выше всех детей.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 111352  (#1)

Темы:   [ Обыкновенные дроби ]
[ Гомотетия (прочее) ]
Сложность: 3
Классы: 10,11

На экране компьютера стоят в ряд 200 человек. На самом деле эта картинка составлена из 100 фрагментов, на каждом – пара: взрослый и ребёнок пониже ростом. Разрешается в каждом из фрагментов изменить масштаб, уменьшив при этом одновременно рост взрослого и ребёнка в одинаковое целое число раз (масштабы разных фрагментов можно менять независимо друг от друга). Докажите, что это можно сделать так, что на общей картинке все взрослые будут выше всех детей.

Прислать комментарий     Решение

Задача 111353  (#2)

Темы:   [ Тождественные преобразования ]
[ Процессы и операции ]
Сложность: 3
Классы: 10,11

На бумажке записаны три положительных числа x, y и 1. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке
 a) число x²?   б) число xy?

Прислать комментарий     Решение

Задача 111354  (#3)

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Экстремальные свойства. Задачи на максимум и минимум. ]
[ Треугольник (построения) ]
Сложность: 3
Классы: 10,11

Дана прямая и две точки A и B, лежащие по одну сторону от этой прямой на равном расстоянии от неё.
Как с помощью циркуля и линейки найти на прямой такую точку C, что произведение  AC·BC  будет наименьшим?

Прислать комментарий     Решение

Задача 111355  (#4)

Темы:   [ Кооперативные алгоритмы ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 10,11

Фокусник с завязанными глазами выдаёт зрителю 29 карточек с номерами от 1 до 29. Зритель прячет две карточки, а остальные отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался?

Прислать комментарий     Решение

Задача 111356  (#5)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 10,11

Квадрат со стороной 1 см разрезан на три выпуклых многоугольника. Может ли случиться, что диаметр каждого из них не превосходит
  а) 1 см;   б) 1,01 см;   в) 1,001 см?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .