ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 111689  (#1)

Темы:   [ Разрезания на параллелограммы ]
[ Перегруппировка площадей ]
[ Монотонность и ограниченность ]
Сложность: 4-
Классы: 8,9,10,11

Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.

Прислать комментарий     Решение

Задача 111690  (#2)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Замощения костями домино и плитками ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Наглядная геометрия в пространстве ]
Сложность: 4-
Классы: 8,9,10

Пространство разбито на одинаковые кубики. Верно ли, что для каждого из этих кубиков обязательно найдётся другой, имеющий с ним общую грань?

Прислать комментарий     Решение

Задача 111691  (#3)

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
[ Принцип крайнего (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 8,9,10,11

На столе лежат  N > 2  кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого N выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.

Прислать комментарий     Решение

Задача 111692  (#4)

Темы:   [ Трапеции (прочее) ]
[ Вписанные и описанные окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9,10,11

Дана неравнобокая трапеция ABCD. Точка A1 – это точка пересечения описанной окружности треугольника BCD с прямой AC,
отличная от C. Аналогично определяются точки B1, C1, D1. Докажите, что A1B1C1D1 – тоже трапеция.

Прислать комментарий     Решение

Задача 111688  (#5)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Соображения непрерывности ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

В бесконечной последовательности  a1, a2, a3, ... число a1 равно 1, а каждое следующее число an строится из предыдущего an–1 по правилу: если у числа n наибольший нечётный делитель имеет остаток 1 от деления на 4, то  an = an–1 + 1,  если же остаток равен 3, то  an = an–1 – 1.  Докажите, что в этой последовательности
  а) число 1 встречается бесконечно много раз;
  б) каждое натуральное число встречается бесконечно много раз.
(Вот первые члены этой последовательности: 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, ...)
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .