Страница:
<< 1 2 3 4 5 [Всего задач: 24]
|
|
Сложность: 5 Классы: 8,9,10
|
Дан треугольник
ABC и линейка, на которой отмечены два
отрезка, равные
AC и
BC . Пользуясь только этой линейкой,
найдите центр вписанной окружности треугольника, образованного
средними линиями
ABC .
|
|
Сложность: 5 Классы: 9,10,11
|
а) Многоугольник обладает следующим свойством: если провести прямую через
любые две точки, делящие его периметр пополам, то эта прямая разделит многоугольник на два равновеликих многоугольника. Верно ли, что многоугольник центрально симметричен?
б) Верно ли, что любая фигура, обладающая свойством, указанным в п.а), центрально симметрична?
|
|
Сложность: 5+ Классы: 8,9,10,11
|
В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
в) Могут ли длины отрезков равняться 4, 4 и 3?
|
|
Сложность: 6- Классы: 10,11
|
Пусть
h — наименьшая высота тетраэдра,
d — наименьшее
расстояние между его противоположными ребрами. При каких
t
возможно неравенство
d>th ?
Страница:
<< 1 2 3 4 5 [Всего задач: 24]