ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Все вершины пирамиды лежат на гранях куба, но не на его ребрах, причем на каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида? б) Все вершины пирамиды лежат в плоскостях граней куба, но не на прямых, содержащих его ребра, причем в плоскости каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида?

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 111727

Темы:   [ Свойства сечений ]
[ Куб ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Комбинаторная геометрия (прочее) ]
[ Пирамида (прочее) ]
Сложность: 4+
Классы: 10,11

а) Все вершины пирамиды лежат на гранях куба, но не на его ребрах, причем на каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида? б) Все вершины пирамиды лежат в плоскостях граней куба, но не на прямых, содержащих его ребра, причем в плоскости каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида?
Прислать комментарий     Решение


Задача 111728

Темы:   [ Пересекающиеся сферы ]
[ Пересекающиеся окружности ]
[ Диаметр, основные свойства ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4+
Классы: 10,11

В пространстве даны две пересекающиеся сферы разных радиусов и точка A, принадлежащая обеим сферам. Докажите, что в пространстве существует точка B, обладающая следующим свойством: если через точки A и B провести произвольную окружность, то точки ее повторного пересечения с данными сферами будут равноудалены от B.

Прислать комментарий     Решение

Задача 111713

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Индукция в геометрии ]
[ Выпуклые многоугольники ]
[ Против большей стороны лежит больший угол ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Разные задачи на разрезания ]
Сложность: 4+
Классы: 8,9,10

а) Докажите, что при n>4 любой выпуклый n -угольник можно разрезать на n тупоугольных треугольников. б) Докажите, что при любом n существует выпуклый n -угольник, который нельзя разрезать меньше, чем на n тупоугольных треугольников. в) На какое наименьшее число тупоугольных треугольников можно разрезать прямоугольник?
Прислать комментарий     Решение


Задача 111715

Темы:   [ Описанные четырехугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Диаметр, основные свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4+
Классы: 8,9,10

Четырехугольник ABCD описан около окружности с центром I . Докажите, что проекции точек B и D на прямые IA и IC лежат на одной окружности.
Прислать комментарий     Решение


Задача 111716

Темы:   [ Пересекающиеся окружности ]
[ Радикальная ось ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательная окружность ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4+
Классы: 8,9,10

Даны четыре точки A , B , C , D . Известно, что любые две окружности, одна из которых проходит через A и B , а другая — через C и D , пересекаются. Докажите, что общие хорды всех таких пар окружностей проходят через одну точку.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .