ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Назовём лестницей высоты n фигуру, состоящую из всех клеток квадрата n×n, лежащих не выше диагонали (на рисунке показана лестница высоты 4). Сколькими различными способами можно разбить лестницу высоты n на несколько прямоугольников, стороны которых идут по линиям сетки, а площади попарно различны? Решение |
Страница: << 1 2 [Всего задач: 8]
Прямые, касающиеся окружности ω в точках B и D, пересекаются в точке P. Прямая, проходящая через P, высекает на окружности хорду AC. Через точку отрезка AC проведена прямая, параллельная BD. Докажите, что она делит длины ломаных ABC и ADC в одинаковых отношениях.
Назовём лестницей высоты n фигуру, состоящую из всех клеток квадрата n×n, лежащих не выше диагонали (на рисунке показана лестница высоты 4). Сколькими различными способами можно разбить лестницу высоты n на несколько прямоугольников, стороны которых идут по линиям сетки, а площади попарно различны?
Страница: << 1 2 [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|