ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли при каком-то натуральном k разбить все натуральные числа от 1 до k на две группы и выписать числа в каждой группе подряд в некотором порядке так, чтобы получились два одинаковых числа?

   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 115365  (#06.4.9.1)

Темы:   [ Исследование квадратного трехчлена ]
[ Алгебраические неравенства (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Даны квадратные трёхчлены  x² + 2a1x + b1x² + 2a2x + b2x² + 2a3x + b3.  Известно, что  a1a2a3 = b1b2b3 > 1.
Докажите, что хотя бы один из этих трёхчленов имеет два корня.

Прислать комментарий     Решение

Задача 115366  (#06.4.9.2)

Темы:   [ Задачи на движение ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4
Классы: 8,9,10

Семь лыжников с номерами 1, 2, ... , 7 ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Оказалось, что каждый лыжник ровно дважды участвовал в обгонах. (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.) По окончании забега должен быть составлен протокол, состоящий из номеров лыжников в порядке финиширования. Докажите, что в забеге с описанными свойствами может получиться не более двух различных протоколов.

Прислать комментарий     Решение

Задача 115367  (#06.4.9.3)

Темы:   [ Десятичная система счисления ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9

Можно ли при каком-то натуральном k разбить все натуральные числа от 1 до k на две группы и выписать числа в каждой группе подряд в некотором порядке так, чтобы получились два одинаковых числа?
Прислать комментарий     Решение


Задача 115368  (#06.4.9.4)

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Углы между биссектрисами ]
[ Вспомогательная окружность ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Свойства симметрий и осей симметрии ]
Сложность: 5-
Классы: 8,9

В треугольнике ABC угол A равен 60o . Пусть BB1 и CC1  — биссектрисы этого треугольника. Докажите, что точка, симметричная вершине A относительно прямой B1C1 , лежит на стороне BC .
Прислать комментарий     Решение


Задача 65072  (#06.4.9.5)

Тема:   [ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Незнайка выписал по кругу 11 натуральных чисел. Для каждых двух соседних чисел он посчитал их разность (из большего вычел меньшее). В результате среди найденных разностей оказалось четыре единицы, четыре двойки и три тройки. Докажите, что Незнайка где-то допустил ошибку.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .