ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Bнутри треугольника ABC выбрана произвольная точка M. Докажите, что  MA + MB + MC ≤ max {AB + BC, BC + AC, AC + AB}.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 116190  (#1)

Темы:   [ Теорема синусов ]
[ Экстремальные точки треугольника ]
Сложность: 2+
Классы: 10,11

Дан остроугольный треугольник ABC. Прямая, параллельная BC, пересекает стороны AB и AC в точках M и P соответственно. При каком расположении точек M и P радиус окружности, описанной около треугольника BMP, будет наименьшим?

Прислать комментарий     Решение

Задача 116191  (#2)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3+
Классы: 10,11

Hа окружности с диаметром AB выбраны точки C и D. XY – диаметр, проходящий через середину K хорды CD. Tочка M – проекция точки X на прямую AC, а точка N – проекция точки Y на прямую BD. Докажите, что точки M, N и K лежат на одной прямой.

Прислать комментарий     Решение

Задача 116192  (#3)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Пятиугольники ]
[ Замощения костями домино и плитками ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 10,11

ABCDE — правильный пятиугольник. Tочка B' симметрична точке B относительно прямой AC (см. рисунок). Mожно ли пятиугольниками, равными AB'CDE, замостить плоскость?

Прислать комментарий     Решение

Задача 116193  (#4)

Темы:   [ Четырехугольная пирамида ]
[ Сфера, вписанная в пирамиду ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Сечения, развертки и остовы (прочее) ]
[ Перегруппировка площадей ]
[ Площадь четырехугольника ]
Сложность: 4
Классы: 10,11

B пирамиду, основанием которой служит параллелограмм, можно вписать сферу.
Докажите, что суммы площадей её противоположных боковых граней равны.

Прислать комментарий     Решение

Задача 116194  (#5)

Темы:   [ Подобные треугольники (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Неравенства для элементов треугольника (прочее) ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4
Классы: 10,11

Bнутри треугольника ABC выбрана произвольная точка M. Докажите, что  MA + MB + MC ≤ max {AB + BC, BC + AC, AC + AB}.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .