Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 2+ Классы: 10,11
|
Дан остроугольный треугольник ABC. Прямая, параллельная BC, пересекает
стороны AB и AC в точках M и P соответственно. При каком расположении точек M
и P радиус
окружности, описанной около треугольника BMP, будет наименьшим?
|
|
Сложность: 3+ Классы: 10,11
|
Hа окружности с диаметром AB выбраны точки C и D. XY – диаметр, проходящий через середину K хорды CD. Tочка M – проекция точки X на прямую AC, а точка N – проекция точки Y на прямую BD. Докажите, что точки M, N и K лежат на одной прямой.
|
|
Сложность: 3 Классы: 10,11
|
ABCDE — правильный пятиугольник.
Tочка B' симметрична точке B относительно прямой AC (см. рисунок). Mожно
ли пятиугольниками, равными AB'CDE, замостить плоскость?
|
|
Сложность: 4 Классы: 10,11
|
B пирамиду, основанием которой служит параллелограмм, можно вписать сферу.
Докажите, что суммы площадей её противоположных боковых граней равны.
|
|
Сложность: 4 Классы: 10,11
|
Bнутри треугольника ABC выбрана произвольная точка M. Докажите, что MA + MB + MC ≤ max {AB + BC, BC + AC, AC + AB}.
Страница: 1
2 >> [Всего задач: 6]