ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 116210  (#3)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Шестиугольники ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 7,8,9

Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?

Прислать комментарий     Решение

Задача 116216  (#3)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Перпендикулярные прямые ]
[ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9,10

В прямоугольном треугольнике ABC с прямым углом C угол A равен 30°, точка I – центр вписанной окружности ABC, D – точка пересечения отрезка BI с этой окружностью. Докажите, что отрезки AI и CD перпендикулярны.

Прислать комментарий     Решение

Задача 116222  (#3)

Темы:   [ Биссектриса делит дугу пополам ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 9,10,11

В треугольнике ABC проведены биссектрисы BB1 и CC1. Известно, что центр описанной окружности треугольника BB1C1 лежит на прямой AC. Найдите угол C треугольника.

Прислать комментарий     Решение

Задача 116228  (#3)

Темы:   [ Неравенство треугольника (прочее) ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 9,10,11

В равнобедренном треугольнике ABC на основании BC взята точка D, а на боковой стороне AB – точки E и M так, что  AM = ME  и отрезок DM параллелен стороне AC. Докажите, что  AD + DE > AB + BE.

Прислать комментарий     Решение

Задача 116234  (#3)

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Подобные треугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10,11

Внутри треугольника ABC взята такая точка O, что  ∠ABO = ∠CAO,  ∠BAO = ∠BCO,  ∠BOC = 90°.  Найдите отношение  AC : OC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .