ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

У Винтика и у Шпунтика есть по три палочки суммарной длины 1 метр у каждого. И Винтик, и Шпунтик могут сложить из трёх своих палочек треугольник. Ночью в их дом прокрался Незнайка, взял по одной палочке у Винтика и у Шпунтика и поменял их местами. Наутро оказалось, что Винтик не может сложить из своих палочек треугольник. Можно ли гарантировать, что Шпунтик из своих — сможет?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 116220  (#1)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Арифметическая прогрессия ]
Сложность: 2+
Классы: 10,11

Существует ли арифметическая прогрессия из 2011 натуральных чисел, в которой количество чисел, делящихся на 8, меньше, чем количество чисел, делящихся на 9, а последнее, в свою очередь, меньше, чем количество чисел, делящихся на 10?

Прислать комментарий     Решение

Задача 116221  (#2)

Темы:   [ Замощения костями домино и плитками ]
[ Четность и нечетность ]
Сложность: 3
Классы: 10

Доска 2010×2011 покрыта доминошками 2×1; некоторые из них лежат горизонтально, некоторые – вертикально.
Докажите, что граница горизонтальных доминошек с вертикальными имеет чётную длину.

Прислать комментарий     Решение

Задача 116222  (#3)

Темы:   [ Биссектриса делит дугу пополам ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 9,10,11

В треугольнике ABC проведены биссектрисы BB1 и CC1. Известно, что центр описанной окружности треугольника BB1C1 лежит на прямой AC. Найдите угол C треугольника.

Прислать комментарий     Решение

Задача 116223  (#4)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 10

У Винтика и у Шпунтика есть по три палочки суммарной длины 1 метр у каждого. И Винтик, и Шпунтик могут сложить из трёх своих палочек треугольник. Ночью в их дом прокрался Незнайка, взял по одной палочке у Винтика и у Шпунтика и поменял их местами. Наутро оказалось, что Винтик не может сложить из своих палочек треугольник. Можно ли гарантировать, что Шпунтик из своих — сможет?

Прислать комментарий     Решение

Задача 116224  (#5)

Темы:   [ Параллелепипеды (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 4
Классы: 10

Куб разбит на прямоугольные параллелепипеды так, что для любых двух параллелепипедов их проекции на некоторую грань куба перекрываются (то есть пересекаются по фигуре ненулевой площади). Докажите, что для любых трёх параллелепипедов найдётся такая грань куба, что проекции каждых двух из них на эту грань не перекрываются.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .