ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 87260

Темы:   [ Параллелепипеды (прочее) ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 8,9

Основанием параллелепипеда служит квадрат. Одна из вершин верхнего основания равноудалена от всех вершин нижнего основания и находится на расстоянии b от этого основания. Сторона основания равна a . Найдите полную поверхность параллелепипеда.
Прислать комментарий     Решение


Задача 87282

Темы:   [ Параллелепипеды (прочее) ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 8,9

На диагонали AC1 параллелепипеда ABCDA1B1C1D1 взята точка M , а на прямой B1C – точка N , причём отрезки MN и BD параллельны. Найдите отношение этих отрезков.
Прислать комментарий     Решение


Задача 87413

Темы:   [ Параллелепипеды (прочее) ]
[ Объем параллелепипеда ]
[ Боковая поверхность призмы ]
Сложность: 3
Классы: 10,11

Основанием параллелепипеда служит ромб со стороной a , и острым углом 30o . Диагональ одной боковой грани перпендикулярна плоскости основания, а боковое ребро составляет с плоскостью основания угол 60o . Найдите полную поверхность и объём параллелепипеда.
Прислать комментарий     Решение


Задача 87415

Темы:   [ Параллелепипеды (прочее) ]
[ Объем призмы ]
Сложность: 3
Классы: 10,11

Основанием наклонного параллелепипеда ABCDA1B1C1D1 служит ромб ABCD со стороной a и острым углом 60o . Ребро AA1 также равно a и образует с ребрами AB и AD углы 45o . Найдите объём параллелепипеда.
Прислать комментарий     Решение


Задача 87422

Темы:   [ Параллелепипеды (прочее) ]
[ Объем параллелепипеда ]
Сложность: 3
Классы: 10,11

Рёбра параллелепипеда равны a , b и c . Рёбра, равные a и b , взаимно перпендикулярны, а ребро, равное c , образует с каждым из них угол 60o . Найдите объём параллелепипеда.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .