ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах BC и CD ромба ABCD взяли точки P и Q соответственно так, что  BP = CQ.
Докажите, что точка пересечения медиан треугольника APQ лежит на диагонали BD ромба.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]      



Задача 116258

Темы:   [ Ромбы. Признаки и свойства ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

На сторонах BC и CD ромба ABCD взяли точки P и Q соответственно так, что  BP = CQ.
Докажите, что точка пересечения медиан треугольника APQ лежит на диагонали BD ромба.

Прислать комментарий     Решение

Задача 87082

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Сфера, касающаяся ребер тетраэдра ]
[ Центр масс ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 10,11

Сфера касается всех рёбер тетраэдра. Соединим точки касания на парах несмежных рёбер.
Докажите, что три полученные прямые пересекаются в одной точке.

Прислать комментарий     Решение

Задача 116242

Темы:   [ Комбинаторика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Эвнин А.Ю.

На новом сайте зарегистрировалось 2000 человек. Каждый пригласил к себе в друзья по 1000 человек. Два человека объявляются друзьями тогда и только тогда, когда каждый из них пригласил другого в друзья. Какое наименьшее количество пар друзей могло образоваться?

Прислать комментарий     Решение

Задача 116247

Темы:   [ Комбинаторика (прочее) ]
[ Принцип крайнего (прочее) ]
[ Соображения непрерывности ]
Сложность: 4-
Классы: 10,11

В стране две столицы и несколько городов, некоторые из них соединены дорогами. Среди дорог есть платные. Известно, что на любом пути из южной столицы в северную имеется не меньше 10 платных дорог. Докажите, что все платные дороги можно раздать 10 компаниям так, чтобы на любом пути из южной столицы в северную имелись дороги каждой из компаний.

Прислать комментарий     Решение

Задача 116400

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Преобразования плоскости (прочее) ]
[ Замощения костями домино и плитками ]
Сложность: 4-
Классы: 10,11

Из N прямоугольных плиток (возможно, неодинаковых) составлен прямоугольник с неравными сторонами. Докажите, что можно разрезать каждую плитку на две части так, чтобы из N частей можно было сложить квадрат, а из оставшихся N частей – прямоугольник.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .