Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 44]
На столе лежит картонный круг радиуса 5 см. Петя, пока возможно, прикладывает к кругу снаружи картонные квадраты со стороной 5 см так, чтобы выполнялись условия:
1) у каждого квадрата одна вершина лежит на границе круга;
2) квадраты не пересекаются;
3) каждый следующий квадрат касается предыдущего вершиной к вершине.
Определите, сколько квадратов может выложить Петя, и докажите, что последний и первый квадрат тоже коснутся вершинами.
Семизначный код, состоящий из семи различных цифр, назовем хорошим.
Паролем сейфа является хороший код. Известно, что сейф откроется, если введён хороший код и на каком-нибудь месте цифра кода совпала с соответствующей цифрой пароля. Можно ли гарантированно открыть сейф быстрее, чем за семь попыток?
|
|
Сложность: 3+ Классы: 10,11
|
На сторонах правильного 2009-угольника отметили по точке. Эти точки являются вершинами 2009-угольника площади S. Каждую из отмеченных точек отразили относительно середины стороны, на которой эта точка лежит. Докажите, что 2009-угольник с вершинами в отражённых точках также имеет площадь S.
Среди участников олимпиады каждый знаком не менее чем с тремя другими. Докажите, что можно выбрать группу из чётного числа участников (больше двух человек) и посадить их за круглый стол так, чтобы каждый был знаком с обоими соседями.
На доске записано 101 число: 1², 2², ..., 101². За одну операцию разрешается стереть любые два числа, а вместо них записать модуль их разности.
Какое наименьшее число может получиться в результате 100 операций?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 44]