Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 44]
Нарисован угол, и ещё имеется только циркуль.
а) Какое наименьшее число окружностей надо провести, чтобы наверняка определить, является ли данный угол острым?
б) Как определить, равен ли данный угол 31° (разрешается проводить сколько угодно окружностей)?
|
|
Сложность: 3 Классы: 10,11
|
Про функцию f(x) известно следующее: любая прямая на координатной плоскости имеет с графиком y = f(x) столько же общих точек, сколько с параболой y = x². Докажите, что f(x) ≡ x².
|
|
Сложность: 3 Классы: 10,11
|
Можно ли все прямые на плоскости разбить на пары перпендикулярных прямых?
|
|
Сложность: 3 Классы: 8,9,10,11
|
а) Есть кусок сыра. Разрешается выбрать любое положительное (возможно, нецелое) число a ≠ 1, и разрезать этот кусок в отношении 1 : a по весу, затем разрезать в том же отношении любой из имеющихся кусков, и т. д. Можно ли действовать так, что после конечного числа разрезаний весь сыр удастся разложить на две кучки равного веса?
б) Тот же вопрос, но выбирается положительное рациональное a ≠ 1.
В треугольнике ABC точка M – середина стороны AC,
точка P лежит на стороне BC. Отрезок AP пересекает BM в точке O. Оказалось, что BO = BP.
Найдите отношение OM : PC.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 44]