Страница: 1 [Всего задач: 5]
|
|
Сложность: 3- Классы: 9,10,11
|
Из Южной Америки в Россию 2010 кораблей везут бананы, лимоны и ананасы. Число бананов на каждом корабле равно числу лимонов на остальных кораблях вместе взятых, а число лимонов на каждом корабле равно числу ананасов на остальных кораблях вместе взятых. Докажите, что общее число фруктов делится на 31.
|
|
Сложность: 3 Классы: 10,11
|
Про функцию f(x) известно следующее: любая прямая на координатной плоскости имеет с графиком y = f(x) столько же общих точек, сколько с параболой y = x². Докажите, что f(x) ≡ x².
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли поверхность октаэдра оклеить несколькими правильными шестиугольниками без наложений и пробелов?
|
|
Сложность: 3+ Классы: 10,11
|
Барон Мюнхгаузен попросил задумать непостоянный многочлен P(x) с целыми неотрицательными коэффициентами и сообщить ему только значения P(2) и P(P(2)). Барон утверждает, что он только по этим данным всегда может восстановить задуманный многочлен. Не ошибается ли барон?
|
|
Сложность: 4 Классы: 10,11
|
На плоскости лежит игла. Разрешается поворачивать иглу на 45° вокруг любого из её концов.
Можно ли, сделав несколько таких поворотов, добиться того, чтобы игла вернулась на исходное место, но при этом её концы поменялись местами?
Страница: 1 [Всего задач: 5]