ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Клетчатый квадрат 2010×2010 разрезан на трёхклеточные уголки. Докажите, что можно в каждом уголке отметить по клетке так, чтобы в каждой вертикали и в каждой горизонтали было поровну отмеченных клеток. Решение |
Страница: << 1 2 [Всего задач: 8]
Дан остроугольный треугольник ABC. На продолжениях BB1 и CC1 его высот за точки B1 и C1 выбраны соответственно точки P и Q так, что угол PAQ – прямой. Пусть AF – высота треугольника APQ. Докажите, что угол BFC – прямой.
Для натуральных чисел a > b > 1 определим последовательность x1, x2, ... формулой . Найдите наименьшее d, при котором ни при каких a и b эта последовательность не содержит d последовательных членов, являющихся простыми числами.
Клетчатый квадрат 2010×2010 разрезан на трёхклеточные уголки. Докажите, что можно в каждом уголке отметить по клетке так, чтобы в каждой вертикали и в каждой горизонтали было поровну отмеченных клеток.
Страница: << 1 2 [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|