ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В команде сторожей у каждого есть разряд (натуральное число). Сторож N-го разряда N суток дежурит, потом N суток спит, снова N суток дежурит, N – спит, и так далее. Известно, что разряды любых двух сторожей различаются хотя бы в три раза. Может ли такая команда осуществлять ежедневное дежурство? (Приступить к дежурству сторожа могут не одновременно, в один день могут дежурить несколько сторожей.)

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 116719  (#1)

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Задачи с неравенствами. Разбор случаев ]
[ Комбинаторика (прочее) ]
Сложность: 4-
Классы: 10,11

В команде сторожей у каждого есть разряд (натуральное число). Сторож N-го разряда N суток дежурит, потом N суток спит, снова N суток дежурит, N – спит, и так далее. Известно, что разряды любых двух сторожей различаются хотя бы в три раза. Может ли такая команда осуществлять ежедневное дежурство? (Приступить к дежурству сторожа могут не одновременно, в один день могут дежурить несколько сторожей.)

Прислать комментарий     Решение

Задача 116725  (#2)

Темы:   [ Системы точек и отрезков (прочее) ]
[ Сумма длин диагоналей четырехугольника ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Внутри круга отмечены 100 точек, никакие три из которых не лежат на одной прямой.
Докажите, что их можно разбить на пары и провести прямую через каждую пару так, чтобы все точки пересечения прямых были в круге.

Прислать комментарий     Решение

Задача 116726  (#3)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 10,11

Докажите, что для любого натурального n существуют такие целые числа  a1, a2, ..., an,  что при всех целых x число
(...((x² + a1)² + a2)² + ... + an–1)² + an   делится на  2n – 1.

Прислать комментарий     Решение

Задача 116727  (#4)

Темы:   [ Куб ]
[ Ломаные внутри квадрата ]
[ Неравенство Коши ]
[ Симметриия и неравенства и экстремумы ]
Сложность: 4-
Классы: 10,11

Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем    .

Прислать комментарий     Решение

Задача 116688  (#5)

Темы:   [ Вписанные и описанные окружности ]
[ Свойства биссектрис, конкуррентность ]
[ Ортоцентр и ортотреугольник ]
[ ГМТ - окружность или дуга окружности ]
[ Соображения непрерывности ]
Сложность: 5-
Классы: 8,9,10

Дан треугольник ABC. Прямая l касается вписанной в него окружности. Обозначим через la, lb, lc прямые, симметричные l относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику ABC.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .