ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существуют ли такие натуральные числа a, b, c, большие 1010, что их произведение делится на любое из них, увеличенное на 2012? Решение |
Страница: << 1 2 [Всего задач: 8]
Существуют ли такие натуральные числа a, b, c, большие 1010, что их произведение делится на любое из них, увеличенное на 2012?
На координатной плоскости нарисовано n парабол, являющихся графиками квадратных трёхчленов; никакие две из них не касаются. Они делят плоскость на несколько областей, одна из которых расположена над всеми параболами. Докажите, что у границы этой области не более 2(n – 1) углов (то есть точек пересечения пары парабол).
Точка E – середина отрезка, соединяющего ортоцентр неравнобедренного остроугольного треугольника ABC с его вершиной A. Вписанная окружность этого треугольника касается сторон AB и AC в точках C' и B' соответственно. Докажите, что точка F, симметричная точке E относительно прямой B'C', лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника ABC.
Страница: << 1 2 [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|