ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существуют ли такие натуральные числа a, b, c, большие 1010, что их произведение делится на любое из них, увеличенное на 2012?

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 116768  (#10.6)

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 10,11

Существуют ли такие натуральные числа a, b, c, большие 1010, что их произведение делится на любое из них, увеличенное на 2012?

Прислать комментарий     Решение

Задача 116769  (#10.7)

Темы:   [ Квадратный трехчлен (прочее) ]
[ Индукция (прочее) ]
[ Задачи с ограничениями ]
Сложность: 5-
Классы: 10,11

Автор: Карасев Р.

На координатной плоскости нарисовано n парабол, являющихся графиками квадратных трёхчленов; никакие две из них не касаются. Они делят плоскость на несколько областей, одна из которых расположена над всеми параболами. Докажите, что у границы этой области не более  2(n – 1)  углов (то есть точек пересечения пары парабол).

Прислать комментарий     Решение

Задача 116770  (#10.8)

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Три точки, лежащие на одной прямой ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Отношения линейных элементов подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Симметрия помогает решить задачу ]
Сложность: 5
Классы: 10,11

Точка E – середина отрезка, соединяющего ортоцентр неравнобедренного остроугольного треугольника ABC с его вершиной A. Вписанная окружность этого треугольника касается сторон AB и AC в точках C' и B' соответственно. Докажите, что точка F, симметричная точке E относительно прямой B'C', лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника ABC.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .