ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На прямой отмечено 45 точек, лежащих вне отрезка AB. Докажите, что сумма расстояний от этих точек до точки A не равна сумме расстояний от этих точек до точки B.

   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 810]      



Задача 103868

Темы:   [ Шахматная раскраска ]
[ Примеры и контрпримеры. Конструкции ]
[ Симметрия помогает решить задачу ]
Сложность: 3-
Классы: 6,7

Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.

Прислать комментарий     Решение


Задача 30307

Темы:   [ Четность и нечетность ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 6,7,8

На прямой отмечено 45 точек, лежащих вне отрезка AB. Докажите, что сумма расстояний от этих точек до точки A не равна сумме расстояний от этих точек до точки B.

Прислать комментарий     Решение

Задача 31234

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 6,7,8

Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры.

Прислать комментарий     Решение

Задача 34940

Тема:   [ Малые шевеления ]
Сложность: 3-

Докажите, что на координатной плоскости можно провести окружность, внутри которой лежит ровно n целочисленных точек.

Прислать комментарий     Решение

Задача 34943

Тема:   [ Сочетания и размещения ]
Сложность: 3-

План города имеет схему, представляющую собой прямоугольник 5×10 клеток. На улицах введено одностороннее движение: разрешается ехать только вправо и вверх. Сколько есть различных маршрутов, ведущих из левого нижнего угла в правый верхний?

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 810]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .