ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Занятия:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Есть 10 монет. Известно, что одна из них фальшивая (по весу тяжелее настоящих). Как за три взвешивания на чашечных весах без гирь определить фальшивую монету? б) Как определить фальшивую монету за три взвешивания, если монет 27? Решение |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58]
На каждой клетке шахматной доски стоит шашка, с одной стороны белая, с другой черная. За один ход можно выбрать любую шашку и перевернуть все шашки, стоящие с выбранной на одной вертикали, и все шашки, стоящие с ней на одной горизонтали.
а) Какое максимальное количество слонов можно расставить на
доске 1000 на 1000 так, чтобы они не били друг друга?
б) Как определить фальшивую монету за три взвешивания, если монет 27?
Учащиеся 57-й школы решили провести чемпионат по мини-футболу. Так как ворота на школьном дворе разного размера, то игроки хотят составить расписание игр так, чтобы:
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|