ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны две концентрические окружности. Хорда большей из них касается меньшей и имеет длину 2.
Найдите площадь кольца, заключенного между окружностями.

   Решение

Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 810]      



Задача 35137

Темы:   [ Площадь круга, сектора и сегмента ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Хорды и секущие (прочее) ]
Сложность: 3-
Классы: 8,9,10

Даны две концентрические окружности. Хорда большей из них касается меньшей и имеет длину 2.
Найдите площадь кольца, заключенного между окружностями.

Прислать комментарий     Решение

Задача 35211

Тема:   [ Подсчет двумя способами ]
Сложность: 3-
Классы: 6,7,8

Обозначим через dk количество таких домов в Москве, в которых живет не меньше k жителей, и через cm - количество жителей в m-ом по величине населения доме. Докажите равенство c1+c2+c3+... = d1+d2+d3+... .
Прислать комментарий     Решение


Задача 35254

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 3-
Классы: 7,8,9

На клетчатой бумаге отмечены произвольным образом 2000 клеток. Докажите, что среди них всегда можно выбрать не менее 500 клеток, попарно не соприкасающихся друг с другом (соприкасающимися считаются клетки, имеющие хотя бы одну общую вершину).
Прислать комментарий     Решение


Задача 35270

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3-
Классы: 8,9,10

Найти наименьшее значение дроби  

Прислать комментарий     Решение

Задача 35298

Темы:   [ Уравнения в целых числах ]
[ Произведения и факториалы ]
Сложность: 3-
Классы: 9,10

Найти все целые натуральные решения уравнения  (n + 2)! – (n + 1)! – n! = n2 + n4.

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 810]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .