ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны положительные числа a, b, c, d, причем a>b>c>d. Докажите, что (a+b+c+d)2>a2+3b2+5c2+7d2.

   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 810]      



Задача 35565

Тема:   [ Замощения костями домино и плитками ]
Сложность: 2+
Классы: 7,8

Как замостить бесконечную клетчатую плоскость крестами, состоящими из пяти клеток?
Прислать комментарий     Решение


Задача 35576

Тема:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
Сложность: 2+
Классы: 9,10

Треугольник имеет площадь, равную 1. Докажите, что длина его средней по длине стороны не меньше, чем $\sqrt {2}$.
Прислать комментарий     Решение


Задача 35577

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2+
Классы: 8,9

Даны положительные числа a, b, c, d, причем a>b>c>d. Докажите, что (a+b+c+d)2>a2+3b2+5c2+7d2.
Прислать комментарий     Решение


Задача 35658

Темы:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
[ Диаметр, основные свойства ]
Сложность: 2+
Классы: 8,9

Дан треугольник со сторонами 2, 3, 4. Найдите радиус наименьшего круга, из которого можно вырезать этот треугольник.
Прислать комментарий     Решение


Задача 35669

Тема:   [ Теория игр (прочее) ]
Сложность: 2+
Классы: 7,8

Ладья стоит на поле a1 шахматной доски. За ход разрешается сдвинуть ее на любое число клеток вправо или вверх. Выигрывает тот, кто поставит ладью на клетку h8. Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 810]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .