ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли четырехугольник, который можно разрезать двумя прямыми на 6 кусков?

   Решение

Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 810]      



Задача 35608

Тема:   [ Инварианты и полуинварианты ]
Сложность: 3-
Классы: 7,8,9

По кругу стоят натуральные числа от 1 до 6 по порядку. Разрешается к любым трём подряд идущим числам прибавить по 1 или из любых трёх, стоящих через одно, вычесть 1. Можно ли с помощью нескольких таких операций сделать все числа равными?
Прислать комментарий     Решение


Задача 35622

Темы:   [ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 7,8,9

Существует ли четырехугольник, который можно разрезать двумя прямыми на 6 кусков?
Прислать комментарий     Решение


Задача 35640

Темы:   [ Перегруппировка площадей ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 3-
Классы: 9,10

В правильном шестиугольнике ABCDEF точки K и L - середины сторон AB и BC соответственно. Отрезки DK и EL пересекаются в точке N. Докажите, что площадь четырехугольника KBLN равна площади треугольника DEN.
Прислать комментарий     Решение


Задача 35714

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
Сложность: 3-
Классы: 7,8,9

На столе стоят восемь стаканов с водой. Разрешается взять любые два стакана и уравнять в них количества воды, перелив часть воды из одного стакана в другой. Докажите, что с помощью таких операций можно добиться того, чтобы во всех стаканах было поровну воды.
Прислать комментарий     Решение


Задача 35803

Темы:   [ Поворот (прочее) ]
[ Многоугольники (прочее) ]
Сложность: 3-
Классы: 9,10

Если повернуть многоугольник вокруг некоторой точки на 70 градусов, то он совместится сам с собой. Какое наименьшее число вершин может быть у такого многоугольника?
Прислать комментарий     Решение


Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 810]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .