ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Квадрат 4×4 разделён на 16 клеток. Раскрасьте эти клетки в чёрный и белый цвета так, чтобы у каждой чёрной клетки было три белых соседа, а у каждой белой клетки был ровно один чёрный сосед. (Соседними считаются клетки, имеющие общую сторону.)
![]() ![]() Существуют ли два последовательных натуральных числа, сумма цифр каждого из которых делится на 7? ![]() ![]() |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 225]
Вася шёл от дома до автобусной остановки пешком со скоростью 4 км/ч, затем ехал на автобусе до школы со скоростью 30 км/ч и затратил на весь путь 1 час. Обратно из школы он ехал на автобусе со скоростью 36 км/ч и шёл пешком от остановки до дома со скоростью 3 км/ч. На обратную дорогу он потратил 1 час 5 мин. Найти путь, который Вася проехал на автобусе, и расстояние от дома до остановки.
На прямой даны точки А, В и, кроме того, 57 точек, лежащих вне отрезка АВ. Каждая из этих 57 точек – либо красного, либо синего цвета. Рассмотрим следующие суммы:
Существуют ли два последовательных натуральных числа, сумма цифр каждого из которых делится на 7?
Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 225] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |