ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В последовательности действительных чисел $a_1$, $a_2$, $\dots$ каждое число, начиная с третьего, равно полусумме двух предыдущих. Докажите, что все параболы вида $y=x^2+a_nx+a_{n+1}$ (где $n=1$, $2$, $3$, $\dots$) имеют общую точку. ![]() ![]() На урок физкультуры пришло $12$ детей, все разной силы. Учитель $10$ раз делил их на две команды по $6$ человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все $10$ раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)? ![]() ![]() ![]() Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что ∠AMD + ∠BMC = 180°. ![]() ![]() |
Страница: 1 2 >> [Всего задач: 7]
Докажите, что предпоследняя цифра любой степени числа 3 чётна.
Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что ∠AMD + ∠BMC = 180°.
Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом увеличении разность между новым и старым значениями числа была бы больше нуля, но меньше старого значения. Начальное значение числа равно 2. Выигравшим считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?
Дана выпуклая фигура, ограниченная дугой A окружности и ломаной ABC так, что дуга и ломаная лежат по разные стороны от хорды AC.
Даны три неотрицательных числа a, b, c. Про них известно, что
a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
Страница: 1 2 >> [Всего задач: 7] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |