ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На сторонах правильного девятиугольника $ABCDEFGHI$ во внешнюю сторону построили треугольники $XAB$, $YBC$, $ZCD$ и $TDE$. Известно, что углы $X$, $Y$, $Z$, $T$ этих треугольников равны $20^{\circ}$ каждый, а среди углов $XAB$, $YBC$, $ZCD$ и $TDE$ каждый следующий на $20^{\circ}$ больше предыдущего. Докажите, что точки $X$, $Y$, $Z$, $T$ лежат на одной окружности. ![]() ![]() По какому модулю числа 1 и 5 составляют приведённую систему вычетов? ![]() ![]() ![]() Решите уравнения а) φ(x) = 2; б) φ(x) = 8; в) φ(x) = 12; г) φ(x) = 14. ![]() ![]() ![]() Докажите, что при любом простом p ![]() ![]() ![]() С помощью циркуля и линейки проведите через общую точку A окружностей S1 и S2 прямую так, чтобы эти окружности высекали на ней равные хорды.
![]() ![]() |
Страница: 1 2 >> [Всего задач: 9]
С помощью циркуля и линейки проведите через общую точку A окружностей S1 и S2 прямую так, чтобы эти окружности высекали на ней равные хорды.
Даны две концентрические окружности S1 и S2. С помощью циркуля и линейки проведите прямую, на которой эти окружности высекают три равных отрезка.
Страница: 1 2 >> [Всего задач: 9] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |