ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Главы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть AA1 и BB1 – высоты треугольника ABC. Докажите, что треугольники A1B1C и ABC подобны. Чему равен коэффициент подобия?

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 1956]      



Задача 56506  (#01.050)

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4+
Классы: 8,9

На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине.
  а) M – точка медианы AA1 (или её продолжения), равноудаленная от точек B1 и C1. Докажите, что  ∠B1MC1 = φ.
  б) O – точка серединного перпендикуляра к отрезку BC, равноудаленная от точек B1 и C1. Докажите, что  ∠B1OC1 = 180° – φ.

Прислать комментарий     Решение

Задача 56507  (#01.051)

Темы:   [ Ромбы. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 8,9

На сторонах выпуклого четырёхугольника ABCD внешним образом построены подобные ромбы, причём их острые углы α прилегают к вершинам A и C. Докажите, что отрезки, соединяющие центры противоположных ромбов, равны, а угол между ними равен α.

Прислать комментарий     Решение

Задача 56508  (#01.052)

Тема:   [ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 2
Классы: 8,9

Пусть AA1 и BB1 – высоты треугольника ABC. Докажите, что треугольники A1B1C и ABC подобны. Чему равен коэффициент подобия?

Прислать комментарий     Решение

Задача 56509  (#01.053)

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки подобия ]
Сложность: 3
Классы: 8,9

Из вершины C остроугольного треугольника ABC опущена высота CH, а из точки H опущены перпендикуляры HM и HN на стороны BC и AC соответственно. Докажите, что треугольники MNC и ABC подобны.

Прислать комментарий     Решение

Задача 56510  (#01.054)

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Угол между касательной и хордой ]
Сложность: 2+
Классы: 8,9

В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что
  а) касательная в точке A к описанной окружности параллельна прямой B1C1;
  б)  B1C1OA,  где O – центр описанной окружности.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 1956]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .