ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Главы:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он может рассадить всех на свои места?

Вниз   Решение


По стороне правильного треугольника катится окружность радиуса, равного его высоте. Докажите, что угловая величина дуги, высекаемой на окружности сторонами треугольника, всегда равна  60o.

Вверх   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1956]      



Задача 56556  (#02.015)

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8

По стороне правильного треугольника катится окружность радиуса, равного его высоте. Докажите, что угловая величина дуги, высекаемой на окружности сторонами треугольника, всегда равна  60o.
Прислать комментарий     Решение


Задача 56557  (#02.016)

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8

Диагонали равнобедренной трапеции ABCD с боковой стороной AB пересекаются в точке P. Докажите, что центр O ее описанной окружности лежит на описанной окружности треугольника APB.
Прислать комментарий     Решение


Задача 56558  (#02.017)

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8

На окружности даны точки A, B, C, D в указанном порядке;  A1, B1, C1 и D1 — середины дуг AB, BC, CD и DA соответственно. Докажите, что  A1C1 $ \perp$ B1D1.
Прислать комментарий     Решение


Задача 56559  (#02.018)

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8

Внутри треугольника ABC взята точка P так, что  $ \angle$BPC = $ \angle$A + 60o,$ \angle$APC = $ \angle$B + 60o и  $ \angle$APB = $ \angle$C + 60o. Прямые AP, BP и CP пересекают описанную окружность треугольника ABC в точках A', B' и C'. Докажите, что треугольник A'B'C' правильный.
Прислать комментарий     Решение


Задача 56560  (#02.019)

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8

На окружности взяты точки  A, C1, B, A1, C, B1 в указанном порядке.
а) Докажите, что если прямые AA1, BB1 и CC1 являются биссектрисами углов треугольника ABC, то они являются высотами треугольника A1B1C1.
б) Докажите, что если прямые AA1, BB1 и CC1 являются высотами треугольника ABC, то они являются биссектрисами углов треугольника A1B1C1.
Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1956]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .