ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Назовём автобусный билет счастливым, если сумма цифр его номера делится на 7. Могут ли два билета подряд быть счастливыми?

Вниз   Решение


Покупатель взял у продавца товара на 10 р. и дал 25 р. У продавца не нашлось сдачи, и он разменял деньги у соседа. Когда они расплатились и покупатель ушёл, сосед обнаружил, что 25 р. фальшивые. Продавец вернул соседу 25 р. и задумался. Какой убыток понёс продавец?

ВверхВниз   Решение


Даны два выпуклых многоугольника A1A2A3A4...An и B1B2B3B4...Bn. Известно, что A1A2 = B1B2, A2A3 = B2B3,..., AnA1 = BnB1 и n - 3 угла одного многоугольника равны соответственным углам другого. Будут ли многоугольники равны?

ВверхВниз   Решение


Перечислить все последовательности длины n из чисел 1..k в таком порядке, чтобы каждая следующая отличалась от предыдущей в единственной цифре, причём не более, чем на 1.

ВверхВниз   Решение


Для заданных n и k ( k$ \le$n) перечислить все k-элементные подмножества множества {1..n}.

ВверхВниз   Решение


На дуге BC окружности, описанной около равностороннего треугольника ABC, взята произвольная точка P. Отрезки AP и BC пересекаются в точке Q. Докажите, что  1/PQ = 1/PB + 1/PC.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 56593

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 2
Классы: 8,9

На окружности взяты точки A, B, C и D. Прямые AB и CD пересекаются в точке M. Докажите, что  AC . AD/AM = BC . BD/BM.
Прислать комментарий     Решение


Задача 56594

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

На окружности даны точки A, B и C, причем точка B более удалена от прямой l, касающейся окружности в точке A, чем C. Прямая AC пересекает прямую, проведенную через точку B параллельно l, в точке D. Докажите, что  AB2 = AC . AD.
Прислать комментарий     Решение


Задача 56595

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

Прямая l касается окружности с диаметром AB в точке C; M и N — проекции точек A и B на прямую l, D — проекция точки C на AB. Докажите, что  CD2 = AM . BN.
Прислать комментарий     Решение


Задача 56596

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведена высота AH, а из вершин B и C опущены перпендикуляры BB1 и CC1 на прямую, проходящую через точку A. Докажите, что  $ \triangle$ABC $ \sim$ $ \triangle$HB1C1.
Прислать комментарий     Решение


Задача 56597

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

На дуге BC окружности, описанной около равностороннего треугольника ABC, взята произвольная точка P. Отрезки AP и BC пересекаются в точке Q. Докажите, что  1/PQ = 1/PB + 1/PC.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .