ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Дан выпуклый четырёхугольник без параллельных сторон. Для каждой тройки его вершин строится точка, дополняющая эту тройку до параллелограмма, одна из диагоналей которого совпадает с диагональю четырёхугольника. Доказать, что из четырёх построенных точек ровно одна лежит внутри исходного четырёхугольника.

Вниз   Решение


Для некоторых натуральных чисел a, b, c и d выполняются равенства  a/c = b/d = ab+1/cd+1.  Докажите, что  a = c  и  b = d.

ВверхВниз   Решение


Найдите все углы α , для которых набор чисел sinα , sin2α , sin3α совпадает с набором cosα , cos2α , cos3α .

ВверхВниз   Решение


Зайцы распилили несколько бревен. Они сделали 10 распилов и получили 16 чурбачков. Сколько бревен они распилили?

ВверхВниз   Решение


Девочка заменила каждую букву в своём имени её номером в русском алфавите. Получилось число 2011533. Как её зовут?

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. Точка X лежит на прямой AB, но не на отрезке AB. Докажите, что длины всех касательных, проведенных из точки X к окружностям, равны.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 86]      



Задача 56653  (#03.000.1)

Тема:   [ Окружности (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что из точки A, лежащей вне окружности, можно провести ровно две касательные к окружности, причем длины этих касательных (т. е. расстояния от A до точек касания) равны.
Прислать комментарий     Решение


Задача 56654  (#03.000.2)

Тема:   [ Окружности (прочее) ]
Сложность: 2-
Классы: 7

Две окружности пересекаются в точках A и B. Точка X лежит на прямой AB, но не на отрезке AB. Докажите, что длины всех касательных, проведенных из точки X к окружностям, равны.
Прислать комментарий     Решение


Задача 56655  (#03.000.3)

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 7,8,9

Две окружности радиусов R и r касаются внешним образом (т. е. ни одна из них не лежит внутри другой). Найдите длину общей касательной к этим окружностям.
Прислать комментарий     Решение


Задача 56656  (#03.000.4)

Тема:   [ Окружности (прочее) ]
Сложность: 2-
Классы: 7

Пусть a и b — длины катетов прямоугольного треугольника, c — длина его гипотенузы. Докажите, что:

а) радиус вписанной окружности треугольника равен (a + b - c)/2;

б) радиус окружности, касающейся гипотенузы и продолжений катетов, равен (a + b + c)/2.
Прислать комментарий     Решение


Задача 56657  (#03.001)

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 3
Классы: 7,8

Прямые PA и PB касаются окружности с центром O (A и B — точки касания). Проведена третья касательная к окружности, пересекающая отрезки PA и PB в точках X и Y. Докажите, что величина угла XOY не зависит от выбора третьей касательной.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 86]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .