ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Расстояния от точки X стороны BC треугольника ABC до прямых AB и AC равны db и dc. Докажите, что  db/dc = BX . AC/(CX . AB).

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 14]      



Задача 56802

Тема:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4
Классы: 9

Длины сторон треугольника образуют арифметическую прогрессию. Докажите, что радиус вписанной окружности равен трети одной из высот треугольника.
Прислать комментарий     Решение


Задача 56803

Тема:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4
Классы: 9

Расстояния от точки X стороны BC треугольника ABC до прямых AB и AC равны db и dc. Докажите, что  db/dc = BX . AC/(CX . AB).
Прислать комментарий     Решение


Задача 56804

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Длины сторон (неравенства) ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Вписанные и описанные многоугольники ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 5
Классы: 9,10

Многоугольник, описанный около окружности радиуса r, разрезан на треугольники (произвольным образом). Докажите, что сумма радиусов вписанных окружностей этих треугольников больше r.
Прислать комментарий     Решение


Задача 56805

Тема:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 5
Классы: 9

Через точку M, лежащую внутри параллелограмма ABCD, проведены прямые PR и QS, параллельные сторонам BC и AB (точки P, Q, R и S лежат на сторонах AB, BC, CD и DA соответственно). Докажите, что прямые BS, PD и MC пересекаются в одной точке.
Прислать комментарий     Решение


Задача 56806

Тема:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 5
Классы: 9

Докажите, что если никакие стороны четырехугольника не параллельны, то середина отрезка, соединяющего точки пересечения противоположных сторон, лежит на прямой, соединяющей середины диагоналей (прямая Гаусса).
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 14]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .