ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что прямая Эйлера треугольника ABC параллельна стороне BC тогда и только тогда, когда  tgBtgC = 3.

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 176]      



Задача 56961  (#05.109)

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 5
Классы: 9

а) Докажите, что описанная окружность треугольника ABC является окружностью девяти точек для треугольника, образованного центрами вневписанных окружностей треугольника ABC.
б) Докажите, что описанная окружность делит пополам отрезок, соединяющий центры вписанной и вневписанной окружностей.
Прислать комментарий     Решение


Задача 56962  (#05.110)

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 5+
Классы: 9

Докажите, что прямая Эйлера треугольника ABC параллельна стороне BC тогда и только тогда, когда  tgBtgC = 3.
Прислать комментарий     Решение


Задача 56963  (#05.111)

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 5+
Классы: 9

Докажите, что отрезок, высекаемый на стороне AB остроугольного треугольника ABC окружностью девяти точек, виден из ее центра под углом  2|$ \angle$A - $ \angle$B|.
Прислать комментарий     Решение


Задача 56964  (#05.112)

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 5+
Классы: 9

Докажите, что если прямая Эйлера проходит через центр вписанной окружности треугольника, то треугольник равнобедренный.
Прислать комментарий     Решение


Задача 56965  (#05.113)

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 6
Классы: 9

Вписанная окружность касается сторон треугольника ABC в точках A1, B1 и C1. Докажите, что прямая Эйлера треугольника A1B1C1 проходит через центр описанной окружности треугольника ABC.
Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 176]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .