ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи 12 полей расположены по кругу: на четырёх соседних полях стоят четыре разноцветных фишки: красная, жёлтая, зелёная и синяя. Одним ходом можно передвинуть любую фишку с поля, на котором она стоит, через четыре поля на пятое (если оно свободно) в любом из двух возможных направлений. После нескольких ходов фишки стали опять на те же четыре поля. Как они могут при этом переставиться? ![]() ![]() Даны уравнения ax² + bx + c = 0 (1) и – ax² + bx + c (2). Доказать, что если x1 и x2 – соответственно какие-либо корни уравнений (1) и (2), то найдётся такой корень x3 уравнения ½ ax² + bx + c, что либо x1 ≤ x3 ≤ x2, либо x1 ≥ x3 ≥ x2. ![]() ![]() ![]() Площадь треугольника ABC равна 1. Пусть A1, B1, C1 — середины сторон BC, CA, AB соответственно. На отрезках AB1, CA1, BC1 взяты точки K, L, M соответственно. Чему равна минимальная площадь общей части треугольников KLM и A1B1C1? ![]() ![]() |
Страница: << 1 2 3 [Всего задач: 13]
Дан треугольник со сторонами a, b и c, причём a ≥ b ≥ c; x, y и z – углы некоторого другого треугольника. Докажите, что bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²).
Страница: << 1 2 3 [Всего задач: 13] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |