ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

α, β и γ - углы треугольника ABC. Докажите, что
а)  cos($ \alpha$/2)sin($ \beta$/2)sin($ \gamma$/2) = (p - a)/4R;
б)  sin($ \alpha$/2)cos($ \beta$/2)cos($ \gamma$/2) = ra/4R.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 82]      



Задача 57617  (#12.034)

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 3
Классы: 9

Докажите, что

\begin{multline*}
h_a=2(p-a)\cos(\beta /2)\cos(\gamma /2)/\cos(\alpha /2)=\\
=2(p-b)\sin(\beta /2)\cos(\gamma /2)/\sin(\alpha /2).
\end{multline*}


Прислать комментарий     Решение

Задача 57618  (#12.035)

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 3
Классы: 9

Докажите, что длину биссектрисы la можно вычислить по следующим формулам:
а)  la = $ \sqrt{4p(p-a)bc/(b+c)^2}$;
б)  la = 2bc cos($ \alpha$/2)/(b + c);
в)  la = 2R sin$ \beta$sin$ \gamma$/cos(($ \beta$ - $ \gamma$)/2);
г)  la = 4p sin($ \beta$/2)sin($ \gamma$/2)/(sin$ \beta$ + sin$ \gamma$).
Прислать комментарий     Решение


Задача 57619  (#12.036)

Тема:   [ Синусы и косинусы углов треугольника ]
Сложность: 2+
Классы: 9

Пусть α, β и γ - углы треугольника ABC. Докажите, что
а)  sin($ \alpha$/2)sin($ \beta$/2)sin($ \gamma$/2) = r/4R;
б)  tg($ \alpha$/2)tg($ \beta$/2)tg($ \gamma$/2) = r/p;
в)  cos($ \alpha$/2)cos($ \beta$/2)cos($ \gamma$/2) = p/4R.
Прислать комментарий     Решение


Задача 57620  (#12.037)

Тема:   [ Синусы и косинусы углов треугольника ]
Сложность: 2+
Классы: 9

α, β и γ - углы треугольника ABC. Докажите, что
а)  cos($ \alpha$/2)sin($ \beta$/2)sin($ \gamma$/2) = (p - a)/4R;
б)  sin($ \alpha$/2)cos($ \beta$/2)cos($ \gamma$/2) = ra/4R.
Прислать комментарий     Решение


Задача 57621  (#12.038)

Тема:   [ Синусы и косинусы углов треугольника ]
Сложность: 2+
Классы: 9

α, β и γ - углы треугольника ABC. Докажите, что
cos$ \alpha$ + cos$ \beta$ + cos$ \gamma$ = (R + r)/R.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 82]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .