Версия для печати
Убрать все задачи
Дан остроугольный треугольник $ABC$. Точки $A_0$ и $C_0$ – середины меньших дуг соответственно $BC$ и $AB$ его описанной окружности. Окружность, проходящая через $A_0$ и $C_0$, пересекает прямые $AB$ и $BC$ в точках $P$ и $S$, $Q$ и $R$ соответственно (все эти точки различны). Известно, что $PQ\parallel AC$. Докажите, что $A_0P+C_0S=C_0Q+A_0R$

Решение
Докажите, что если

+

=

,
то
A = 120
o.


Решение
Дана система из
n точек на плоскости, причём известно, что для любых двух
точек данной системы можно указать движение плоскости, при котором первая точка
перейдёт во вторую, а система перейдёт сама в себя. Доказать, что все точки
такой системы лежат на одной окружности.


Решение
В треугольнике
ABC проведены биссектрисы
AD
и
BE. Найдите величину угла
C, если известно, что
AD . BC =
BE . AC и
AC
BC.

Решение