ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Биссектрисы внутреннего и внешнего углов при вершине A треугольника ABC пересекают прямую BC в точках P и Q.
Докажите, что окружность, построенная на отрезке PQ как на диаметре, проходит через точку A.

Вниз   Решение


Докажите, что отрезок, соединяющий вершину равнобедренного треугольника с точкой, лежащей на основании, не больше боковой стороны треугольника.

ВверхВниз   Решение


На столе расположено n картонных и n пластмассовых квадратов, причем никакие два картонных и никакие два пластмассовых квадрата не имеют общих точек, в том числе и точек границы. Оказалось, что множество вершин картонных квадратов совпадает с множеством вершин пластмассовых квадратов. Обязательно ли каждый картонный квадрат совпадает с некоторым пластмассовым?

ВверхВниз   Решение



Найдите объем наклонной треугольной призмы, основанием которой служит равносторонний треугольник со стороной, равной a, если боковое ребро призмы равно стороне основания и наклонено к плоскости основания под углом 60o.

ВверхВниз   Решение


На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.

ВверхВниз   Решение


Шесть кругов расположены на плоскости так, что некоторая точка O лежит внутри каждого из них. Докажите, что один из этих кругов содержит центр некоторого другого.

ВверхВниз   Решение


Докажите, что любой выпуклый многоугольник площади 1 можно поместить в прямоугольник площади 2.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 58067  (#20.021)

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 3
Классы: 8,9

Решите задачу 20.8, воспользовавшись понятием выпуклой оболочки.
Прислать комментарий     Решение


Задача 58068  (#20.022)

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 5
Классы: 8,9

На плоскости даны 2n + 3 точки, никакие три из которых не лежат на одной прямой, а никакие четыре не лежат на одной окружности. Докажите, что из этих точек можно выбрать три точки так, что n из оставшихся точек лежат внутри окружности, проведенной через выбранные точки, а n — вне ее.
Прислать комментарий     Решение


Задача 58069  (#20.023)

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 5
Классы: 8,9

Докажите, что любой выпуклый многоугольник площади 1 можно поместить в прямоугольник площади 2.
Прислать комментарий     Решение


Задача 58070  (#20.024)

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 5
Классы: 8,9

На плоскости дано конечное число точек. Докажите, что из них всегда можно выбрать точку, для которой ближайшими к ней являются не более трех данных точек.
Прислать комментарий     Решение


Задача 58071  (#20.025)

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 5
Классы: 8,9

На столе расположено n картонных и n пластмассовых квадратов, причем никакие два картонных и никакие два пластмассовых квадрата не имеют общих точек, в том числе и точек границы. Оказалось, что множество вершин картонных квадратов совпадает с множеством вершин пластмассовых квадратов. Обязательно ли каждый картонный квадрат совпадает с некоторым пластмассовым?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .