ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Биссектрисы внутреннего и внешнего углов при вершине A треугольника ABC пересекают прямую BC в точках P и Q.
![]() ![]() Докажите, что отрезок, соединяющий вершину равнобедренного треугольника с точкой, лежащей на основании, не больше боковой стороны треугольника.
![]() ![]() ![]() На столе расположено n картонных и n пластмассовых квадратов, причем никакие два картонных и никакие два пластмассовых квадрата не имеют общих точек, в том числе и точек границы. Оказалось, что множество вершин картонных квадратов совпадает с множеством вершин пластмассовых квадратов. Обязательно ли каждый картонный квадрат совпадает с некоторым пластмассовым? ![]() ![]() ![]()
![]() ![]() ![]() На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.
![]() ![]() ![]() Шесть кругов расположены на плоскости так, что некоторая точка O лежит внутри каждого из них. Докажите, что один из этих кругов содержит центр некоторого другого. ![]() ![]() ![]() Докажите, что любой выпуклый многоугольник площади 1 можно поместить в прямоугольник площади 2. ![]() ![]() |
Страница: 1 2 >> [Всего задач: 7]
Страница: 1 2 >> [Всего задач: 7] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |