ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Прасолов В.В., Задачи по планиметрии
>>
глава 23. Делимость, инварианты, раскраски
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Выпуклый многоугольник разрезан на p треугольников так, что на их сторонах нет вершин других треугольников. Пусть n и m — количества вершин этих треугольников, лежащих на границе исходного многоугольника и внутри его. а) Докажите, что p = n + 2m - 2. б) Докажите, что количество отрезков, являющихся сторонами полученных треугольников, равно 2n + 3m - 3. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]
а) Докажите, что p = n + 2m - 2. б) Докажите, что количество отрезков, являющихся сторонами полученных треугольников, равно 2n + 3m - 3.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|