ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В каждой клетке доски 5×5 клеток сидит жук. В некоторый момент все жуки переползают на соседние (по горизонтали или вертикали) клетки. Обязательно ли при этом останется пустая клетка? Решение Детали полотна игрушечной железной дороги имеют форму четверти окружности радиуса R. Докажите, что последовательно присоединяя их концами так, чтобы они плавно переходили друг в друга, нельзя составить путь, у которого начало совпадает с концом, а первое и последнее звенья образуют тупик, изображенный на рис. Решение |
Страница: 1 2 >> [Всего задач: 6]
б) Докажите, что если из шахматной доски размером 8×8 вырезаны две произвольные клетки разного цвета, то оставшуюся часть доски всегда можно замостить костями домино размером 1×2.
Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток.
В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?
Страница: 1 2 >> [Всего задач: 6] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|