ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Храмцов Д.

Через центры некоторых клеток шахматной доски 8×8 проведена замкнутая несамопересекающаяся ломаная. Каждое звено ломаной соединяет центры соседних по горизонтали, вертикали или диагонали клеток. Докажите, что в ограниченном ею многоугольнике общая площадь чёрных частей равна общей площади белых частей.

Вниз   Решение


Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества  A1, A2, A3, ...  так, чтобы при любом натуральном k сумма всех чисел, входящих в подмножество Ak, равнялась  k + 2013?

ВверхВниз   Решение


Разрежьте произвольный треугольник на 3 части и сложите из них прямоугольник.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 58220  (#25.001)

Тема:   [ Равносоставленные фигуры ]
Сложность: 2
Классы: 8,9

Разрежьте произвольный треугольник на 3 части и сложите из них прямоугольник.
Прислать комментарий     Решение


Задача 58221  (#25.002)

Темы:   [ Равносоставленные фигуры ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 2+
Классы: 8,9

Разрежьте произвольный треугольник на части, из которых можно составить треугольник, симметричный исходному относительно некоторой прямой (части переворачивать нельзя).

Прислать комментарий     Решение

Задача 58222  (#25.003)

Тема:   [ Равносоставленные фигуры ]
Сложность: 3
Классы: 8,9

Разрежьте правильный треугольник шестью прямыми на части и сложите из них 7 одинаковых правильных треугольников.
Прислать комментарий     Решение


Задача 58223  (#25.004)

Тема:   [ Равносоставленные фигуры ]
Сложность: 4+
Классы: 8,9

Разрежьте правильный шестиугольник на 5 частей и сложите из них квадрат.
Прислать комментарий     Решение


Задача 58224  (#25.005)

Тема:   [ Равносоставленные фигуры ]
Сложность: 4+
Классы: 8,9

Разрежьте квадрат на 6 частей и сложите из них три одинаковых квадрата.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .