ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть для простого числа p > 2 и целого a, не кратного p, выполнено сравнение x² ≡ a (mod p). Докажите, что a(p–1)/2 ≡ 1 (mod p). ![]() |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 209]
Пусть n – натуральное число, не кратное 17. Докажите, что либо n8 + 1, либо n8 – 1 делится на 17.
Докажите, что при любом простом p
Пусть для простого числа p > 2 и целого a, не кратного p, выполнено сравнение x² ≡ a (mod p). Докажите, что a(p–1)/2 ≡ 1 (mod p).
Докажите, что если x² + 1 (x – целое) делится на нечётное простое p, то p = 4k + 1.
При помощи задачи 60752 докажите, что существует бесконечно много простых чисел вида p = 4k + 1.
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 209] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |