ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Известно, что x1, x2, x3 – корни уравнения x3 – 2x2 + x + 1 = 0. ![]() |
Страница: << 147 148 149 150 151 152 153 >> [Всего задач: 1255]
Решить систему:
Найдите все значения параметра a, при которых корни x1, x2, x3 многочлена x3 – 6x2 + ax + a удовлетворяют
равенству
Постройте многочлен, корни которого равны квадратам корней многочлена x3 + x2 – 2x – 1.
Известно, что x1, x2, x3 – корни уравнения x3 – 2x2 + x + 1 = 0.
Какому условию должны удовлетворять коэффициенты a, b, c уравнения x³ + ax² + bx + c, чтобы три его корня составляли арифметическую прогрессию?
Страница: << 147 148 149 150 151 152 153 >> [Всего задач: 1255] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |